

WHY OFFSHORE WIND IN GREECE

Panagiotis Ladakakos HWEA, President

Workshop on Wind Offshore, Athens Hilton Hotel, April 12, 2019

Photo: Poseidon Rising, Rachael Talibat

NECP: A challenging decade for the energy sector in Greece...

National Energy & Climate Plan (NECP)

Energy parameter/index		Target 2030	Estimation 2030*
GHGs decrease compared to 2005	non-ETS sectors	16%	31%
	ETS sectors	43%	63%
	in Gross Final Energy Consumption	31%	31%
RES share	in Gross Final Electricity Consumption	55%	56%
KES Slidie	in Heat & Cooling	30%	32%
	in Transportation	14%	20%

ΕΘΝΙΚΟ ΣΧΕΔΙΟ ΓΙΑ ΤΗΝ ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΟ ΚΛΙΜΑ ΑΘΗΝΑ, ΙΑΝΟΥΑΡΙΟΣ 2019 * with the application of additional policy measures provided in NECP

NECP: A challenging decade for wind energy in Greece...

Estimation for installed RES capacity for electricity

Installing 7,8 GW of new RES until 2030 is a challenge. Could offshore wind ensure the 2030 targets?

Current status & prospects of onshore wind

- Wind Energy Auctions have been undersubscribed
- Lack of mature onshore wind projects
- High wind onshore sites are gradually exhausted
- Eventually there will be a saturation in onshore wind...

Auction	Category	Tendered Capacity [MW]	Awarded Capacity [MW]	Deficit
July 2018	Wind (3MW <p≤50mw)< td=""><td>300</td><td>170,9</td><td>129,1</td></p≤50mw)<>	300	170,9	129,1
December 2018	Wind (3MW <p≤50mw)< td=""><td>229</td><td>159,7</td><td>69,4</td></p≤50mw)<>	229	159,7	69,4
April 2019 (upcoming)	Common (Wind>50MW & PV>20MW)	600	?	
		529	330,6	198,4

Only one wind project participates!

Source: RAE

NECP: Few but critical provisions for wind offshore

NECP, pg. 135

"The specific requirements for the development of a specific regulatory (licensing and support scheme) and spatial planning framework for offshore wind farms are also highlighted"

NECP, pg. 147

Αρίθμηση	Όνομα μέτρου πολιτικής	Στόχος	Επηρεαζόμενος τομέας	Εκτιμώμενες επιπτώσεις (1: Πολύ χαμηλές έως 5: Πολύ υψηλές	Κατηγορία μέτρου	Κατάσταση εφαρμογής
		1				
M2.3	Αδειοδοτικό και χωροταξικό πλαίσιο για θαλάσσια αιολικά πάρκα	Αύξηση παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ	Παραγωγή ηλεκτρικής ενέργειας	2	Κανονιστικό μέτρο	Σχεδιαζόμενο
Licensing & Spatial planning for wind offshore						

NECP, pg. 279

"It should be noted that **in order to achieve** the above-mentioned **new wind** and photovoltaic capacity...it is necessary to gradually examine ...new categories of projects (e.g. <u>offshore wind farms</u>)...In this context, **the respective regulatory framework for the operation of these projects should also be developed**"

The opportunity of the Greek seas

Source: Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives, Soukissian et. al., energies, 2017

The winds of the Aegean sea: Still an unexploitable source

Main challenges for Offshore wind in Greece

- Depth of waters
- Transmission Capacity
- Infrastructure (ports, shipyards)
- Licensing constraints
- Political Geostrategic constraints
- Costs

Source: https://globalwindatlas.info

Offshore wind in Greece – Floating is a game changer

- Rapid developments in technology, costs, projects
- Exploitation of domestic experience & local industrial base (shipyards, cables etc.)
- Significant domestic value (WTGs less than 40% of CAPEX)
- Opportunity & need for Greece

Global challenge for floating wind - Huge potential in deep waters

Country/ Region	Share of offshore wind resource in +60m depth	Potential for floating wind capacity	
Europe	80%	4.000 GW	
USA	60%	2.450 GW	
Japan	80%	500 GW	

Source: CarbonTrust

Source: EMODnet

Offshore wind LCOE

The cost reduction journey of bottom fixed offshore wind provides confidence for similar floating wind LCOE decrease

Floating wind LCOE

LCOE decrease depending on capacity

Floating wind reaching parity with bottom fixed

Maybe Greece should wait some years to open the market?

The answer to the question above is negative!

- ✓ Project development & licensing lead-times
- √ Adaptation of domestic infrastructure (grid, ports, yards etc.)
- ✓ Whiteboard future planning
- ✓ Advantage of today early stages
- ✓ Premature markets contain great chances

The future is today...Greece must grab the opportunity!

Macroeconomic benefits of floating wind projects

QUESTION:

How much would offshore wind impact the Greek economy? real economic growth, jobs, social welfare

Case study in the UK

- ✓ 2031-2050: **1GW annual deployment** of floating wind in the UK and **2GW exports** in the growing global market
- ✓ 1 euro of public support (by 2029) in supply chain, pre-commercial and early commercial stage will have 15 euros cumulative GVA and 17.000 new jobs by 2050

Alternatively

✓ **0 euro** of public support will have **7,9 euros** cumulative GVA and **3.600 new jobs** by 2050

MACROECONOMIC BENEFITS OF FLOATING OFFSHORE WIND IN THE UK

DATE // September 2018

Macroeconomic benefits of floating wind projects

500 MW of offshore wind generates 2.1 million person-days of employment

Are banks willing to finance floating wind?

Existing offshore wind projects in the EU co-financed up to 40% by European Investment Bank. Floating is the new candidate.

"Floating is a good example. If we could **create a demonstration effect** that led to more projects of this nature that created a supply chain around floating wind, we could **get the costs down** to something that is more economic, and we could then start and **have a snowball effect**... You open up huge potential. You also open up new export markets for Europe...**That's the dream**."

Andrew McDowell, Vice President European Investment Bank

Policy issues: Central planning by the State or not?

Yes, but in a different way

- Current framework should be modified
- Government's role should be the determination of a marine spatial planning, not the licensing of projects
- Simple and fast licensing approvals (floating is very environmental friendly)
- Remuneration scheme

What remuneration scheme for offshore wind?

Various alternative tools could become available

- Special auctions for offshore wind
 (pilot auctions for non mature projects could initiate the process since currently there are no mature projects)
- Auctions for offshore in grid hubs where the System Operator provides connection capacity
- Common auctions with onshore wind with special premium for offshore
- Individual notification process (2014/C 200/01 State aid guidelines provisions)
- Unsolicited proposals is also a useful tool

The key role of the transmission network

Saturation of grids in certain areas

- Many grids already characterized as saturated
- Several areas close to electrical saturation

...and

islands with limited capacity

Potential introduction of offshore wind should be coordinated very closely with the expansion of the National Transmission Network!

Proposals for immediate actions to boost offshore wind in Greece

- ✓ Allow licensing of projects from today
- ✓ The revision of the Spatial plan for RES should incorporate the Greek seas
- ✓ Screening for exclusion zones (marine traffic, firing ranges, sensitive areas etc.)
- ✓ HTSO/ADMIE should consider the idea of building Transmission hubs in the sea for offshore exploitation
- ✓ Pilot Projects & a Pilot Auction will be a catalyst

Last but not least: The geostrategic parameter

- Offshore wind gives the opportunity to exploit the unexploited territorial waters
- Electrical interconnection in the Aegean
- Development of Exclusive Economic Zones (EEZ) in all Greek Seas
- Greece producer & exporter of Green Energy
- Contribution to the European Strategy for Energy Independence
- Attraction of large foreign investors/ investments
- Geopolitical empowerment and sustainable development

